Predavanje RAG10.8: Spektralni prostori

Trditev 1.41: Naj bo f:(A,+\infty)\to R semialgebraina funkcija. Potem obstaja B\geq A in N\in\mathbb N, da za vsak x\in (B,+\infty) velja |f(x)|\leq x^N.

Izrek 1.42 (Łojasiewiczeva neenakost): Naj bo K\subseteq \mathbb R^n kompaktna semialgebraina mnoica in f,g:K\to\mathbb R zvezni semialgebraini funkciji, za kateri velja f^{-1}(0)\subseteq g^{-1}(0). Potem obstaja N\in\mathbb N in C\geq 0, da za vsak x\in K velja |g(x)|^N\leq C |f(x)|.

This entry was posted in Pedagoško delo, Realna algebraična geometrija (FMF), Slovenščina. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s