Domača naloga LA010.5b

Naj bo V unitarni vektorski prostor in \mathcal A:V\to V endomorfizem. Dokaži, da je \mathcal A sebi-adjungiran natanko tedaj, ko za vsak v\in V velja \langle \mathcal Av,v\rangle\in\mathbb R.

Rok za oddajo je torek, 8.junija ob 11:00. Naloge oddajte le študenti, katerih vpisne številke se končajo s 3, 5, 6, 9, 0, in sicer v moj poštni predal na Gosposvetski 84. Zagovori bodo v sredo, 9.junija ob 17:00 pri Gregorju Donaju (na Gosposvetski 84).

This entry was posted in Linearna algebra (FNM), Pedagoško delo, Slovenščina. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s