Domača naloga LA010.5a

Na vektorskem prostoru \mathbb R^n vpeljemo normo |\!\| x\|\!|:=\sum_{i=1}^n |x_i| za x=(x_1,\ldots,x_n)\in\mathbb R^n. Pokaži, da ta norma ni porojena s skalarnim produktom. Torej, da ne obstaja skalarni produkt \langle \cdot,\cdot\rangle z lastnostjo \langle x,x\rangle=|\!\| x\|\!|^2 za vse x\in\mathbb R^n.

Rok za oddajo je torek, 1.junija ob 11:00. Naloge oddajte le študenti, katerih vpisne številke se končajo z 1, 2, 4, 7, 8, in sicer v moj poštni predal na Gosposvetski 84. Zagovori bodo v sredo, 2.junija ob 17:00 pri Gregorju Donaju (na Gosposvetski 84).

This entry was posted in Linearna algebra (FNM), Pedagoško delo, Slovenščina. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s