Domača naloga LA010.4a

Naj bo \mathcal A:\mathcal U\to\mathcal U endomorfizem.
  1. Če velja \mathcal A^2=\mathcal A, potem dokaži, da je \mathcal U={\rm ker}\,\mathcal A \oplus {\rm im}\,\mathcal A.
  2. Če je \mathcal A^2=\mathcal I, potem pokaži, da velja \mathcal U={\rm ker}\,(\mathcal A -\mathcal I)\oplus{\rm ker}\,(\mathcal A+\mathcal I).

Rok za oddajo je torek, 18.maja ponedeljek, 17.maja ob 11:00. Naloge oddajte le študenti, katerih vpisne številke se končajo z 1, 4, 5, 8, 0, in sicer v moj poštni predal na Gosposvetski 84. Zagovori bodo v sredo, 19.maja ob 17:00 pri Gregorju Donaju (na Gosposvetski 84).

This entry was posted in Linearna algebra (FNM), Pedagoško delo, Slovenščina. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s