Domača naloga LA010.3a

Popolni matriko A=\begin{bmatrix} 2 & 6 \\ & \end{bmatrix} tako, da bo imela lastna vektorja u_1=\begin{bmatrix} 3 \\ 1\end{bmatrix} in u_2=\begin{bmatrix} 2 \\ 1\end{bmatrix}. Poišči še matriko B\neq A, ki ima u_1 in u_2 za lastna vektorja s pripadajočima lastnima vrednostima \lambda_1=1 in \lambda_2=0. Koliko je B^{20}?

Rok za oddajo je torek, 4.maja ob 11:00. Naloge oddajte le študenti z lihimi vpisnimi številkami in sicer v moj poštni predal na Gosposvetski 84. Zagovori bodo v sredo, 5.maja ob 17:00 pri Gregorju Donaju (na Gosposvetski 84).

This entry was posted in Linearna algebra (FNM), Pedagoško delo, Slovenščina. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s