Domača naloga LA010.2

Naj bo T=\begin{bmatrix} a & b \\ c & d\end{bmatrix}\in M_{2}(\mathbb R) in definirajmo preslikavo \mathfrak T:M_{2}(\mathbb R)\to M_{2}(\mathbb R) s predpisom X\mapsto XT-TX.

  1. Preveri, da je \mathfrak T linearna preslikava;
  2. Določi rang preslikave \mathfrak T; (pozor: le-ta je odvisen od vrednosti a,b,c,d\in\mathbb R)
  3. Izberi si kakšno bazo \mathcal B prostora M_2(\mathbb R) in nato določi matriko \mathfrak T[\mathcal B,\mathcal B].

Rok za oddajo je torek, 6.aprila ob 11:00. Naloge oddajte v moj poštni predal na Gosposvetski 84. Zagovori bodo v sredo, 7.aprila ob 17:15 17:00 pri Gregorju Donaju (na Gosposvetski 84).

This entry was posted in Linearna algebra (FNM), Pedagoško delo, Slovenščina. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s